

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2022

Marking Scheme

Mathematics

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Leaving Certificate 2022

Mathematics

Higher Level

Paper 1

Marking Scheme

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	B	C	D
No of categories	2	3	4	5
5-mark scale	0,5	$0,2,5$	$0,2,3,5$	
10-mark scale			$0,3,7,10$	$0,3,5,8,10$
15-mark scale				$0,4,8,12,15$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- response of no substantial merit (no credit)
- correct response (full credit)

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (mid partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work, or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are denoted with a * and this level of credit is referred to as Full Credit -1. Thus, for example, in Scale 10C, Full Credit -1 of 9 marks may be awarded.

The only marks that may be awarded for a question are those on the scale above, or Full Credit -1.
A rounding penalty is applied only once in each section (a), (b), (c) etc. A penalty for an omitted unit is applied only once in each section (a), (b), (c) etc. There is no penalty for omitted units if the question specifies the unit to be used in the answer.

In general, accept a candidate's work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

In general, an answer without sufficient supporting work is awarded the lowest non-zero level of credit (typically Partial Credit or Low Partial Credit, as appropriate).

Summary of mark allocations and scales to be applied

Section A (120) Answer any four questions			Section B (100) Answer any two questions			
Question 1 (30)		Question 4 (30)	Question 7 (50)	Question 9 (50)		
(a)	10C	(a) 10 C	(a), (b) 10D		5B	
(b)	5B	(b)(i) 10C	(c) 5 C	(b)	10C	
(c)	15D	(b)(ii) 10D	(d) 15 D	(c)	5A	
			(e) 10C	(d)	10C	
Question 2 (30)		Question 5 (30)	(f) 5C	(e)	5B	
		(g) 5B	(f)(i)	10C		
(b)(i)	10D		(b)(i) 15D		(f)(ii)	5 C
(b)(ii)	15D	(b)(ii) 10D	Question 8 (50)			
			(a), (b) 15D	Question 10 (50)		
Question 3 (30)		Question 6 (30)	(c) 5C	(a)	5B	
(a)(i)	5C		(d) 10C	(b)	10D	
(a)(ii)	10D	(b) 10D	(e) 10D	(c)	10C	
(a)(iii)	5 C	(c) 5 C	(f) 10 D	(d)	10C	
				(e)(i) (e)(ii)	$\begin{aligned} & 10 \mathrm{C} \\ & 5 \mathrm{C} \end{aligned}$	

Palette of annotations available to examiners

Symbol	Name	$\begin{array}{c}\text { Meaning in the body of the } \\ \text { work }\end{array}$	$\begin{array}{c}\text { Meaning when used in the right } \\ \text { margin }\end{array}$		
Tick	Cross	$\begin{array}{c}\text { Incorrect work } \\ \text { (distinct from an error) }\end{array}$	$\begin{array}{l}\text { The work presented in the body of } \\ \text { the script merits full credit }\end{array}$		
*	Star	$\begin{array}{c}\text { Rounding / Unit / Arithmetic } \\ \text { the script merits 0 credit }\end{array}$			
error / Misreading				$]$	Error
:---					

Note: Where work of substance is presented in the body of the script, the annotation on the right margin should reflect a combination of annotations in the work.
In a C scale that is not marked using steps, where ${ }^{*}$ and $\sim \sim$ and $\sim \sim$ appear in the body of the work, then \square L should be placed in the right margin.
In the case of a D scale with the same annotations, M should be placed in the right margin.

Detailed marking notes

Model Solutions \& Marking Notes

Note: The model solutions for each question are not intended to be exhaustive - there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Where "work of merit" is referred to in the Marking Notes, example(s) are given to demonstrate the standard of work that is to be considered work of merit in that particular question.

Where steps are listed in the Marking Notes, unless otherwise specified, it is to be taken that they can be independently correct / incorrect - that is, in a candidate's solution, step n can be considered correct even if previous step(s) have not been correctly presented, as long as the work done to arrive at step n from the previous step(s) has not been oversimplified. It is specifically noted where this does not hold. Note also that these steps may not need to be presented in the order specified in the Marking Notes.

Q1	Model Solution - 30 Marks	Marking Notes
(a)	$\begin{aligned} & b^{2}-4 a c=0 \\ & m^{2}-4(3)(3)=0 \\ & m^{2}=36 \\ & m= \pm 6 \end{aligned}$ OR $(3 x-3)(x-1)=0 \text { so } m=6$ Or $(3 x+3)(x+1)=0$ so $m=-6$ OR Differentiates: $6 x-m=0$ So $x=\frac{m}{6}$ $\begin{aligned} & 3\left(\frac{m^{2}}{36}\right)-\frac{m^{2}}{6}+3=0 \\ & m^{2}=36 \\ & \boldsymbol{m}= \pm 6 \end{aligned}$ OR $x^{2}-\frac{m}{3} x+1=0$ Equal roots, α and α : $\begin{aligned} & 2 \alpha=\frac{m}{3} \text { so } \alpha=\frac{m}{6} \\ & \alpha^{2}=1 \text { so } \frac{m^{2}}{36}=1 \end{aligned}$ So $m= \pm 6$	Scale 10C (0, 3, 7, 10) 3 steps: 1. $b^{2}-4 a c=0$ 2. Substitutes in for a, b, c 3. Solves for m Low Partial Credit - Work of merit, for example, identifies a or b or c - Some correct differentiation - Mentions perfect square - Divides the given equation by 3 High Partial Credit - Two steps correct - One correct value of m found - Finds $x=\frac{m}{6}$ and substitutes into function - Finds correct factors or roots

Q1	Model Solution - 30 Marks	Marking Notes
(b)	$(2 x+3)^{2} \geq 0$ for all $x \in \mathbb{R}$ So $(2 x+3)^{2}+7 \geq 7>0$ OR $(2 x+3)^{2}=-7$ $2 x+3= \pm \sqrt{-7}$, which is not real OR $\begin{aligned} & 4 x^{2}+12 x+9+7=0 \\ & 4 x^{2}+12 x+16=0 \\ & b^{2}-4 a c=12^{2}-4(4)(16)<0 \end{aligned}$ so no real roots OR The graph of $y=(2 x+3)^{2}+7$ is U-shaped and the minimum value of y is 7 , therefore, no real solutions.	Scale 5B (0, 2, 5) Partial Credit - Work of merit, for example, mentions that a squared number is non-negative, or $b^{2}-4 a c<0$ - Correct transposition of 7 - Some correct work in the expansion of $(2 x+3)^{2}$

Q2	Model Solution - 30 Marks	Marking Notes
(a)	$\frac{2 x^{3}}{3}+\frac{5 x^{2}}{2}+6 x+c$	Scale 5C (0, 2, 3, 5) Low Partial Credit - Some correct integration High Partial Credit - 3 of the 4 terms correct (including $+c$ as a term) Full Credit -1 - $\quad+c$ term missing
$\begin{array}{\|l\|} \hline \text { (b) } \\ \text { (i) } \end{array}$	$\begin{aligned} & \int_{0}^{2}\left(a x^{2}+b x+c\right) d x=538 \\ & \frac{a x^{3}}{3}+\frac{b x^{2}}{2}+\left.c x\right\|_{x=0} ^{x=2}=538 \\ & \frac{a\left(2^{3}\right)}{3}+\frac{b\left(2^{2}\right)}{2}+c(2)=538 \\ & 4 a+3 b+3 c=807 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Note: integration is required in order to be awarded any credit 4 steps: 1. $\int\left(a x^{2}+b x+c\right) d x$ 2. Integrates all 3 terms 3. Subs in limits (accept without 0 subbed in) and sets expression equal to 538 4. Simplifies to given expression Low Partial Credit - Work of merit, for example, integration indicated Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct

Q2	Model Solution - 30 Marks	Marking Notes
(b) (ii)	(2) $-\mathbf{(1)}: \quad 24 a+6 b=72$ (3) - (2): $\quad 48 a+6 b=-216$ (5) - (4): $\quad 24 a=-288$ So $a=-12$ (4): $24(-12)+6 b=72$ $6 b=360$ so $b=60$ (1): $4(-12)+3(60)+3 c=807$ $3 c=675$ so $c=225$ OR Eq1: $a=\frac{807-3 b-3 c}{4}$ Eq2: $\begin{gathered} 7(807-3 b-3 c)+9 b+3 c=879 \\ c=\frac{795-2 b}{3} \end{gathered}$ Eq3: $\begin{aligned} & 19(807-3 b-(795-2 b))+15 b+795-2 b=663 \\ &-6 b=-360 \\ & b=60 \end{aligned}$ Back substitution: $\begin{gathered} c=\frac{795-2(60)}{3} \\ c=225 \\ a=\frac{807-3(60)-3(225)}{4} \\ a=-12 \end{gathered}$	Scale 15D (0, 4, 8, 12, 15) Method 1: 3 steps: 1. Two equations in the same 2 variables 2. One equation in 1 variable 3. Finds 3 variables Method 2: 1. Writes one variable in terms of the other two 2. Writes a second variable in terms of ONE of the other variables 3. Finds 3 variables Low Partial Credit - Work of merit, for example, $4 a=807-3 b-3 c$ Mid Partial Credit - 1 step correct High Partial Credit - 2 steps correct

Q3	Model Solution - 30 Marks	Marking Notes
(a) (i)	$\begin{aligned} & z-i z=6+2 i-i(6+2 i) \\ & =6+2 i-6 i-2 i^{2} \\ & =8-4 i \end{aligned}$ OR $\begin{aligned} & z(1-i)=8-4 i \\ & z=\frac{8-4 i}{1-i} \\ & z=\frac{(8-4 i)(1+i)}{(1-i)(1+i)} \\ & z=\frac{12+4 i}{2}=6+2 i \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit - Work of merit, for example, some correct substitution, or $z(1-i)$ High Partial Credit - Mishandles $-2 i^{2}$, otherwise correct - Multiplies numerator and denominator by conjugate
(a) (ii)	$\begin{aligned} & \|z\|^{2}=6^{2}+2^{2}=40 \\ & \|i z\|^{2}=2^{2}+6^{2}=40 \\ & \|z-i z\|^{2}=8^{2}+4^{2}=80 \\ & 40+40=80 \end{aligned}$ OR $\begin{aligned} & \|x+i y\|^{2}+\|-y+x i\|^{2}=\|(x+y)+(y-x) i\|^{2} \\ & x^{2}+y^{2}+y^{2}+x^{2} \\ & \quad=x^{2}+2 x y+y^{2}+x^{2}-2 x y+y^{2} \\ & 2 x^{2}+2 y^{2}=2 x^{2}+2 y^{2} \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit - Work of merit, for example, correct formula with some substitution Mid Partial Credit - Two correct values found, from $\|z\|,\|i z\|$ and $\|z-i z\|$ High Partial Credit - Two correct values found, from $\|z\|^{2},\|i z\|^{2}$, and $\|z-i z\|^{2}$ Full Credit -1 - Finds $\|z\|^{2},\|i z\|^{2}$, and $\|z-i z\|^{2}$, but no conclusion of equality
(a) (iii)	Radius $=\sqrt{80} \div 2=\sqrt{20}$ Area $=\pi(\sqrt{20})^{2}=20 \pi$ square units OR Centre $=\frac{6+2 i-2+6 i}{2}=2+4 i$ Radius $=\sqrt{(6-2)^{2}+(2-4)^{2}}=\sqrt{20}$ Area $=\pi(\sqrt{20})^{2}=20 \pi$ square units (Accept without units)	Scale 5C (0, 2, 3, 5) Allow solution treating problem as being in the real 2D co-ordinate plane rather than the complex plane Low Partial Credit - Some work of merit, for example, some substitution into a relevant formula High Partial Credit - Finds radius - Some work of merit in finding radius, and finds area based on incorrect radius

Q3	Model Solution - 30 Marks	Marking Notes
(b)	$\begin{aligned} & \tan A=\frac{1}{\sqrt{3}}, \text { so } A=30^{\circ} \text {, so } \theta=330^{\circ} \\ & r=\sqrt{1^{2}+(\sqrt{3})^{2}}=2 \\ & (\sqrt{3}-i)^{9}=2^{9}(\cos 9(330)+i \sin 9(330)) \\ & =512(\cos 2970+i \sin 2970) \\ & =0+512 i \\ & a=0, b=512 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Note: polar form must be used to achieve any credit Note: Accept $0+512 i$ for Full Credit Note that argument may also be given as $\theta=-30^{\circ}$, etc., or $\theta=\frac{11 \pi}{6}$, etc. 4 steps: 1. Finds r 2. Finds θ 3. Subs into de Moivre's Theorem 4. Evaluates Low Partial Credit - Work of merit, for example, plots $\sqrt{3}-i$, or some correct substitution into de Moivre's Theorem Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct Full Credit -1 - $\quad a$ and b not explicitly stated and solution given as $512 i$

Q4	Model Solution - 30 Marks	Marking Notes
(a)	$u_{3}=\sqrt{\frac{u_{2}}{u_{1}}}=\sqrt{\frac{64}{2}}=\sqrt{32}=\left(2^{5}\right)^{\frac{1}{2}}=2^{\frac{5}{2}}$	Scale 10C (0, 3, 7, 10) 3 steps: 1. Substitutes u_{1} and u_{2} into u_{3} 2. Writes 64 or 32 as a power of 2 3. Finishes (deals with square root) Low Partial Credit - Work of merit, for example, some correct substitution into u_{3} High Partial Credit - 2 steps correct
(b) (i)	$\begin{aligned} & {\left[5 e^{k}-13=13-5 e^{-k}\right]} \\ & 5 y-13=13-\frac{5}{y} \\ & 5 y^{2}-13 y=13 y-5 \\ & 5 y^{2}-26 y+5=0 \\ & T_{2}-T_{1}=T_{3}-T_{2} \\ & T_{1}+T_{3}=2 T_{2} \quad \text { OR } \\ & \\ & 5\left(e^{k}\right)^{2}-26\left(e^{k}\right)+5=0 \\ & 5 e^{2 k}-26 e^{k}+5=0 \\ & 5 e^{k}+5 e^{-k}=26 \\ & T_{1}+T_{3}=2 T_{2} \\ & a=\frac{5}{y} \\ & \frac{5}{y}+d=13 \\ & d=13-\frac{5}{y} \\ & 13+\left(13-\frac{5}{y}\right)=5 y \\ & 26 y-5=5 y^{2} \\ & 5 y^{2}-26 y+5=0 \end{aligned}$	Scale 10C (0, 3, 7, 10) Each method shown has 3 steps. Method 1: 1. Equates common differences 2. Replaces e^{k} with y and e^{-k} with $\frac{1}{y}$ or y^{-1} 3. Writes in required form Method 2: 1. Shows $T_{1}+T_{3}=2 T_{2}$ for any arithmetic sequence 2. Replaces y with e^{k} and simplifies 3. Divides by e^{k} to show $T_{1}+T_{3}=2 T_{2}$ Method 3: 1. Finds the common difference in terms of y 2. Finds equation in y 3. Writes in required form Low Partial Credit - Work of merit, for example, finds one common difference, or replaces e^{k} with y or y with e^{k}, or states $T_{3}-T_{2}=T_{2}-T_{1}$ High Partial Credit - 2 steps correct

Q4	Model Solution - 30 Marks	Marking Notes
(b) (ii)	$\begin{aligned} & (y-5)(5 y-1)=0 \\ & y=5 \text { or } \frac{1}{5} \\ & e^{k}=5 \text { or } e^{k}=\frac{1}{5} \\ & k=\ln 5 \text { or } k=\ln \frac{1}{5}=\ln \left(5^{-1}\right)=-\ln 5 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) 3 steps: 1. Fully substituted quadratic formula OR factors found 2. Solves for y 3. Solves for k, in correct form Low Partial Credit - Work of merit, for example, effort at factorisation, or identifies a, b, or c Mid Partial Credit - 1 step correct High Partial Credit - 2 steps correct Full Credit -1 - 2 values of e^{k} correctly found, only 1 value of k correctly found

Q5	Model Solution - 30 Marks	Marking Notes
(a)	$\begin{aligned} & g^{\prime}(x)=2 x-\left(-1 x^{-2}\right) \\ & =2 x+\frac{1}{x^{2}} \end{aligned}$ OR $g^{\prime}(x)=2 x-\frac{x(0)-1(1)}{x^{2}}=2 x+\frac{1}{x^{2}}$	Scale 5B (0, 2, 5) Note: No credit if differentiation is not used. Accept the answer in an unsimplified form, for example, $2 x-\left(-1 x^{-2}\right)$ Partial Credit - Some correct differentiation
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	OR $\begin{aligned} & (x+1)\left(2 x^{2}-23 x+63\right)=0 \\ & (x+1)(2 x-9)(x-7)=0 \\ & x=-1,4 \cdot 5, \text { or } 7 \end{aligned}$	Scale 15D (0, 4, 8, 12, 15) Accept correct answers, with $4 \cdot 5$ and 7 verified, for Full Credit. 4 steps: 1. Finds 1 term in $2 x^{2}-23 x+63$ 2. Finds remaining 2 terms 3. Factorises $2 x^{2}-23 x+63$ OR fully substituted formula 4. Finds 3 solutions Low Partial Credit - Work of merit, for example, some correct division, or sets up long division correctly, or sets $x+1=0$ - Correct answers with no work Mid Partial Credit - 2 steps correct - Two roots correct with sufficient work (note: supporting work is not needed for $x=-1$) High Partial Credit - 3 steps correct

Q5	Model Solution - 30 Marks	Marking Notes
(b) (ii)	$f^{\prime}(x)=6 x^{2}-42 x+40<0$ Roots: $\frac{42 \pm \sqrt{42^{2}-4(6)(40)}}{2(6)}=\frac{42 \pm \sqrt{804}}{12}$ $=1 \cdot 137 \ldots \text { or }=5 \cdot 862 \ldots$ So: $1.14<x<5.86$ [2 D.P.]	Scale 10D (0, 3, 5, 8, 10) Note: in general, solution must be based on differentiation in order for any credit to be awarded Accept $1.14 \leq x \leq 5.86$ 4 steps: 1. Finds $f^{\prime}(x)$ 2. Fully substituted formula 3. Finds roots 4. Finds correct range of values Low Partial Credit - Some correct differentiation Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct

Q6	Model Solution - 30 Marks	Marking Notes
(a)	$\begin{aligned} & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)^{2}+4(x+h)-2 x^{2}-4 x}{h} \\ & =\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}+4 x+4 h-2 x^{2}-4 x}{h} \\ & =\lim _{h \rightarrow 0} \frac{4 x h+2 h^{2}+4 h}{h} \\ & =\lim _{h \rightarrow 0}(4 x+2 h+4)=4 x+4 \end{aligned}$	Scale 15D (0, 4, 8, 12, 15) Note: no credit unless differentiation from first principles is being used. 4 steps: 1. Finds $f(x+h)$ 2. Finds $f(x+h)-f(x)$ 3. Finds $\frac{f(x+h)-f(x)}{h}$ 4. Finds $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ Low Partial Credit: - Work of merit, for example, some substitution into $f(x+h)$ Mid Partial Credit: - 2 steps correct High Partial Credit: - 3 steps correct - Left hand side missing, otherwise correct

Q6	Model Solution - 30 Marks	Marking Notes
(b)	$A=l \times w=4 x \times x=4 x^{2}$ When $A=225,4 x^{2}=225$, so $x^{2}=\frac{225}{4}$, i.e. $x=\frac{15}{2}$ $\frac{d A}{d x}=8 x=8\left(\frac{15}{2}\right)=60 \mathrm{~cm}^{2} / \mathrm{cm}$ Accept without unit OR $\begin{aligned} & l=4 x \text { so } x=\frac{l}{4} \\ & A=l \times \frac{l}{4}=\frac{1}{4} l^{2} \\ & \frac{d l}{d x}=4 \text { and } \frac{d A}{d l}=\frac{1}{2} l \\ & \frac{d A}{d x}=\frac{d A}{d l} \times \frac{d l}{d x} \\ & \frac{d A}{d x}=\frac{1}{2} l \times 4 \end{aligned}$ When $\mathrm{A}=225, \frac{1}{4} l^{2}=225$, so $l=30$ $\frac{d A}{d x}=\frac{1}{2}(30)(4)=60 \mathrm{~cm}^{2} / \mathrm{cm}$ Accept without unit	Scale 10D (0, 3, 5, 8, 10) Method 1: 1. Write A in terms of x 2. Find $x=\frac{15}{2}$ 3. Find $\frac{d A}{d x}$ 4. Evaluate $\frac{d A}{d x}$ at $x=\frac{15}{2}$ Low Partial Credit: - Work of merit, for example, $l=4 x$; mentions $\frac{d A}{d x}$ Mid Partial Credit: - 2 steps correct High Partial Credit: - 3 steps correct Method 2: Low Partial Credit: - States relevant derivative, for example, $\frac{d A}{d x}$ - $l=4 x$ Mid Partial Credit: - Any two of the following: - $\frac{d l}{d x}=4$ - $\frac{d A}{d l}=\frac{1}{2} l$ - $\frac{d A}{d x}=\frac{d A}{d l} \times \frac{d l}{d x}$ - $l=30$ High Partial Credit: - $\frac{d A}{d x}=\frac{d A}{d l} \times \frac{d l}{d x}$, and any two others from the MPC list above

Q6	Model Solution - 30 Marks	Marking Notes
(c)	Quadratic graph through $(0,-3),(1,0)$, $(2,1),(3,0)$, and $(4,-3)$.	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Work of merit, for example, one correct point with integer co-ordinates plotted, or correct shape High Partial Credit: - Three correct points with integer co-ordinates plotted Full Credit -1: - Point at $x=4$ plotted incorrectly, otherwise correct

Q7	Model Solution - 50 Marks	Marking Notes
(a) (b)	(a) $\begin{aligned} h(4) & =2\left(4^{3}\right)-28 \cdot 5\left(4^{2}\right)+105(4)+70 \\ & =162 \mathrm{BPM} \end{aligned}$ $\text { (b) } \begin{aligned} h^{\prime}(x) & =3\left(2 x^{2}\right)-2(28 \cdot 5 x)+105 \\ & =6 x^{2}-57 x+105 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Accept unsimplified version of $h^{\prime}(x)$ Low Partial Credit - Work of merit in either part, for example, in (a), some correct substitution; in (b): some correct differentiation Mid Partial Credit - (a) or (b) correct - Work of merit in both (a) and (b) High Partial Credit - One part correct and work of merit in the other Full Credit -1 - All correct, except that unit is missing or incorrect in (a)
(c)	$h^{\prime}(2)=6\left(2^{2}\right)-57(2)+105=15$ Explanation: It is the rate at which Hannah's heart rate is increasing after / at 2 minutes.	Scale 5C (0, 2, 3, 5) Low Partial Credit - Work of merit, for example, some correct substitution into $h^{\prime}(x)$, or explanation shows some understanding of derivative as rate of change High Partial Credit - One part correct ($h^{\prime}(2)$ or explanation)

Q7	Model Solution - 50 Marks	Marking Notes
(d)	Least value of $h(x)=h(0)=70$ [from graph] $\begin{aligned} & h^{\prime}(x)=6 x^{2}-57 x+105=0 \text { at local max } \\ & 2 x^{2}-19 x+35=0 \\ & (2 x-5)(x-7)=0 \\ & x=2 \cdot 5 \text { or } 7 \\ & \text { Max }=h(2 \cdot 5) \text { [from graph] } \\ & =2\left(2 \cdot 5^{3}\right)-28 \cdot 5\left(2 \cdot 5^{2}\right)+105(2 \cdot 5)+70 \\ & =185 \cdot 625 \end{aligned}$	Scale 15D (0, 4, 8, 12, 15) 4 steps: 1. Finds least value of $h(x)$ 2. Sets $h^{\prime}(x)=0$ 3. Finds x-value for max 4. Finds greatest value of $h(x)$ Low Partial Credit - Work of merit, for example, indicates least value at $h(0)$ - Any correct differentiation - Brings down $h^{\prime}(x)$ from (b) Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct
(e)	$h^{\prime}(x)=6 x^{2}-57 x+105$ Decreasing most quickly at $h^{\prime \prime}(x)=0$ So $12 x-57=0$ So $x=4.75$ minutes $=4 \mathrm{mins} 45 \mathrm{secs}$ OR Decreasing most quickly at midpoint of local $\mathrm{max} / \mathrm{min}$, that is, $x=\frac{2.5+7}{2}=4.75$ minutes $=4 \mathrm{mins} 45 \mathrm{secs}$	Scale 10C (0, 3, 7, 10) 3 steps (note that step 1 must be done or implied, in order for steps 2 or 3 to be considered correct): 1. Indicates $h^{\prime \prime}(x)=0$ OR midpoint of local max and min values 2. Finds value of x in decimal / fraction form 3. Finds x in required from Low Partial Credit - Work of merit, for example, marks relevant point on graph, indicates $h^{\prime \prime}(x)$ - Brings down $h^{\prime}(x)$ from (b) - First differences found and some indication of the greatest first difference High Partial Credit - 2 steps correct, including Step 1

Q7	Model Solution - 50 Marks	Marking Notes
(f)	$\begin{aligned} & b^{\prime}(x)=h^{\prime}(x) \\ & k^{\prime}(x)=0.9 h^{\prime}(x) \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit - Work of merit in 1 part, for example, $b(x)=h(x)+15$, or $k(x)=0.9 h(x)$ High Partial Credit - 1 part correct
(g)	$\begin{gathered} m(x)=2(0 \cdot 8 x)^{3}-28 \cdot 5(0 \cdot 8 x)^{2} \\ +105(0 \cdot 8 x)+70 \\ =1 \cdot 024 x^{3}-18 \cdot 24 x^{2}+84 x+70 \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit - Work of merit, for example, expands $(0 \cdot 8 x)^{2}$ or $(0 \cdot 8 x)^{3}$, or some substitution of $0 \cdot 8 x$ into $h(x)$

Q8	Model Solution - 50 Marks	Marking Notes
(a), (b)	(a) $\begin{array}{lllllllll}12 & 42 & 102 & 132 & 102 & 42 & 12 & 42 & 102\end{array}$ (b) Appropriate graph through the 9 points	Scale 15D (0, 4, 8, 12, 15) 17 items are required: 8 table entries and 9 plots (which need to be joined appropriately for Full Credit) Low Partial Credit - Any 1 item correct Mid Partial Credit - Any 8 items correct High Partial Credit - Any 12 items correct Full Credit -1 - All items correct but points not joined or joined inappropriately - All items but 1 correct, and points appropriately joined
(c)	$\begin{aligned} & \text { Period }=6 \\ & \text { Range }=[12,132] \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit - Work of merit, for example, mentions 12,132 , or 120 ; or period or range clearly marked on graph High Partial Credit - Period or range correct Full Credit -1 - Period and range correct, but swapped - Period $=6$ and Range $=120$ - Range $=[12,132]$ and Period given as $0-6$ or $1-7$, etc.

Q8	Model Solution - 50 Marks	Marking Notes
(d)	$50 \div 6=8$ periods, 2 minutes 1 period: 4 mins above 42 m 8 periods: $8 \times 4=32$ mins above 42 m 50 mins: $32+2=34$ mins above 42 m	Scale 10C (0, 3, 7, 10) Low Partial Credit - Work of merit, for example, $50 \div 6$, or $6+6+\cdots$, or indicates 4 - The line $h(t)=42$ shown on the graph High Partial Credit - Finds 32 mins - Adds 2 to a relevant number of mins
(e)	$\begin{aligned} & 60 \cos \left(\frac{\pi}{3} t\right)=72-110=-38 \\ & \cos \left(\frac{\pi}{3} t\right)=-\frac{38}{60} \end{aligned}$ Ref angle $=\cos ^{-1}\left(\frac{38}{60}\right)=0.8849 \ldots$ radians 1st time: Quadrant 2 2nd time: Quadrant 3 $\begin{aligned} & \frac{\pi}{3} t_{2}=\pi+0.8849 \ldots \text { radians } \\ & t=\frac{3(\pi+0.8849 \ldots)}{\pi}=3.845 \ldots=3.85 \mathrm{mins} \\ & {[2 \mathrm{DP}]} \end{aligned}$ OR $\cos \left(\frac{\pi}{3} t\right)=-\frac{38}{60}$ $\frac{\pi}{3} t_{1}=\cos ^{-1}\left(-\frac{38}{60}\right)$ $t_{1}=2.15494 \ldots$ $t=6-2.15494$ $t=3.85 \mathrm{mins}$	Scale 10D (0, 3, 5, 8, 10) 1. Isolates $\cos \left(\frac{\pi}{3} t\right)$ 2. Finds reference angle or $\frac{\pi}{3} t_{1}$ 3. Finds $\frac{\pi}{3} t_{2}$ or t_{1} 4. Finds t Low Partial Credit - Work of merit, for example, some correct work towards isolating $\cos \left(\frac{\pi}{3} t\right)$ Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct Full Credit -1 - Calculator in degree mode, otherwise correct

Q8	Model Solution - 50 Marks	Marking Notes
(f)	$\begin{aligned} & \frac{1}{8} \int_{0}^{8}\left(72-60 \cos \left(\frac{\pi}{3} t\right)\right) d t \\ & =\frac{1}{8}\left(72 t-\frac{3 \times 60 \sin \left(\frac{\pi}{3} t\right)}{\pi}\right)_{t=0}^{t=8} \\ & =\frac{1}{8}\left(72(8)-\frac{180 \sin \frac{8 \pi}{3}}{\pi}-\left(-\frac{180 \sin 0}{\pi}\right)\right) \\ & =72-6.20 \ldots=65.8 \mathrm{~m}[1 \mathrm{DP}] \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Note: integration is required in order to be awarded any credit 4 steps (if $\frac{1}{8}$ is omitted, treat step 1 as not fully correct, but all other steps can be accepted as correct): 1. $\frac{1}{8} \int_{0}^{8} h(t) d t$ 2. Integrates correctly 3. Subs in limits 4. Evaluates correctly Low Partial Credit - Work of merit, for example, integration indicated Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct Full Credit -1 - Calculator in degree mode, otherwise correct

Q9	Model Solution - 50 Marks	Marking Notes
(a)	$15\left(0 \cdot 6^{2 \cdot 5}\right)=4 \cdot 182 \ldots=4 \cdot 18[\mathrm{mg}][2 \mathrm{DP}]$	Scale 5B (0, 2, 5) Accept correct answer without work Low Partial Credit - Work of merit, for example, correct substitution into given expression
(b)	$\begin{aligned} & 15\left(0 \cdot 6^{t}\right)=1 \\ & 0 \cdot 6^{t}=\frac{1}{15} \\ & \ln 0 \cdot 6^{t}=t \ln 0 \cdot 6=\ln \frac{1}{15} \\ & t=\frac{\ln \frac{1}{15}}{\ln 0 \cdot 6}=5 \cdot 30 \ldots=5 \cdot 3 \text { [days] } \\ & \quad \text { OR } \\ & t=\log _{0.6} \frac{1}{15}=5.30 \ldots \\ & \quad=5.3 \text { [days] [1 DP] } \end{aligned}$	Scale 10C (0, 3, 7, 10) 1. Isolates $0 \cdot 6^{t}$ 2. Converts to log equation (not necessarily to base e) 3. Solves for t Low Partial Credit - Work of merit, for example, $15\left(0 \cdot 6^{t}\right)=1$ - 5.3 days by trial and improvement High Partial Credit - 2 steps correct
(c)	15: amount from injection just given 15(0 $\cdot 6)$: amount from injection 1 day ago 15(0 $\cdot 6^{2}$): amount from injection 2 days ago 15(0 $\cdot 6^{3}$): amount from injection 3 days ago OR There is 15 mg from the injection just given, and the amount from each previous injection has reduced by 40% each day	Scale 5A (0, 5)
(d)	$\begin{aligned} & 15+15(0 \cdot 6)+\cdots+15\left(0 \cdot 6^{9}\right) \\ & S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{15\left(1-0 \cdot 6^{10}\right)}{1-0 \cdot 6} \\ & =37 \cdot 273 \ldots=37 \cdot 27[\mathrm{mg}][2 \mathrm{DP}] \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - Work of merit, for example, indicates sum of two or more relevant terms, identifies a or r, or S_{n} formula with some substitution High Partial Credit - S_{n} formula fully substituted

Q9	Model Solution - 50 Marks	Marking Notes
(e)	$S_{\infty}=\frac{a}{1-r}=\frac{15}{1-0.6}=37.5[\mathrm{mg}]$	Scale 5B (0, 2, 5) Partial Credit - S_{∞} formula with some substitution - Identifies a or r
$\begin{aligned} & \hline \text { (f) } \\ & \text { (i) } \end{aligned}$	Amount immediately after nth injection: $\begin{aligned} & d+d(0 \cdot 85)+\cdots+d\left(0 \cdot 85^{n-1}\right) \\ & =\frac{a\left(1-r^{n}\right)}{1-r}=\frac{d\left(1-0.85^{n}\right)}{1-0.85} \\ & =\frac{20 d\left(1-0.85^{n}\right)}{3} \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - Work of merit, for example, identifies a or r, or one term in series (other than d) High Partial Credit - Fully correct substitution into formula - One error in substitution and finishes correctly
(f) (ii)	$\begin{aligned} & \frac{20 d\left(1-0.85^{7}\right)}{3}=50 \\ & d=\frac{50 \times 3}{20\left(1-0.85^{7}\right)}=11.03 \ldots=11[\mathrm{mg}][\in \mathbb{N}] \end{aligned}$	Scale 5C (0, 2, 3, 5) 2 steps: 1. Sets up equation in d 2. Finds value of d Low Partial Credit - Work of merit, for example, some correct substitution into formula for amount of drug, or identifies a or r High Partial Credit - 1 step correct

Q10	Model Solution - 50 Marks	Marking Notes
(a)	$\begin{aligned} & P(3)=0.82-0.12 \ln 4 \\ & =0.653 \ldots=0.65[2 \mathrm{DP}] \end{aligned}$	Scale 5B (0, 2, 5) Accept correct answer without work Accept 65•36\% or 65\% Partial Credit - Work of merit, for example, indicates $P(3)$
(b)	$\begin{aligned} & 0.82-0.12 \ln (t+1)=0.55 \\ & 0 \cdot 12 \ln (t+1)=0.27 \\ & \ln (t+1)=\frac{0 \cdot 27}{0 \cdot 12}=2 \cdot 25 \\ & t+1=e^{2 \cdot 25} \\ & t=e^{2 \cdot 25}-1=8.487 \ldots=8.49 \text { [hours] } \\ & {[2 \mathrm{DP}]} \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Note: if logs are mishandled, award at most Mid Partial Credit 1. Sets up equation 2. Isolates $\ln (t+1)$ 3. Finds $t+1$ 4. Finishes Low Partial Credit - Work of merit, for example, sets up equation correctly, or incorrect equation set up but some subsequent correct work - Correct answer using trial and improvement Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct
(c)	(i) $\begin{aligned} & P^{\prime}(t)=\frac{-0.12}{t+1} \\ & P^{\prime}(1)=\frac{-0.12}{1+1}=-0.06 \end{aligned}$ (ii) The proportion decreases [as t goes up]	Scale 10C (0, 3, 7, 10) Low Partial Credit - Some correct differentiation in (i) - (ii) correct High Partial Credit - (i) correct - (ii) correct and some correct differentiation in (i)

Q10	Model Solution - 50 Marks	Marking Notes
(d)	$\left[P^{\prime \prime}(t)=0\right.$ at all points of inflection] $P^{\prime \prime}(t)=-0 \cdot 12\left(-(t+1)^{-2}\right)$ $=\frac{0 \cdot 12}{(t+1)^{2}}=0 \Rightarrow 0 \cdot 12=0$, contradiction. [So, no points of inflection] OR $\left.P^{\prime \prime}(t)=\frac{0.12}{(t+1)^{2}} \neq 0 \quad \text { as } 0 \cdot 12 \neq 0\right]$ [So, no points of inflection]	Scale 10 C (0, 3, 7, 10) Low Partial Credit - Indicates second derivative High Partial Credit - Finds $P^{\prime \prime}(t)$ - Error in finding $P^{\prime \prime}(t)$, but shows that their $P^{\prime \prime}(t)$ can't be 0 in the given domain
(e) (i)	$\begin{aligned} & \log _{10} A=\log _{10} B(t+1)^{c} \\ & \log _{10} A=\log _{10} B+\log _{10}(t+1)^{c} \\ & c \log _{10}(t+1)=\log _{10} A-\log _{10} B \\ & c=\frac{\log _{10} A-\log _{10} B}{\log _{10}(t+1)} \end{aligned}$ OR $\begin{aligned} & (t+1)^{c}=\frac{A}{B} \\ & \log _{t+1} \frac{A}{B}=c \\ & c=\log _{t+1} A-\log _{t+1} B \\ & c=\frac{\log _{10} A}{\log _{10}(t+1)}-\frac{\log _{10} B}{\log _{10}(t+1)} \end{aligned}$	Scale $10 \mathrm{C}(0,3,7,10)$ Low Partial Credit - Work of merit, for example, correct relevant equation involving logs - $(t+1)^{c}=\frac{A}{B}$ High Partial Credit - Correct equation involving $\log _{10} A$, $\log _{10} B$, and $\log _{10}(t+1)$ - Correct equation involving $\log _{t+1} A$ and $\log _{t+1} B$
(e) (ii)	$\begin{aligned} & c=\frac{\log _{10} 80-\log _{10} 47}{\log _{10}(24+1)}=0.1652 \ldots=0.165 \\ & {[3 \mathrm{DP}]} \end{aligned}$ OR $\begin{aligned} & 80=47(24+1)^{c} \\ & (24+1)^{c}=\frac{80}{47} \\ & \ln 25^{c}=\ln \frac{80}{47} \\ & c=\frac{\ln \frac{80}{47}}{\ln 25}=0.1652 \ldots=0.165 \text { [3 DP] } \end{aligned}$ OR $\begin{aligned} & 80=47(24+1)^{c} \\ & (24+1)^{c}=\frac{80}{47} \\ & c=\log _{25} \frac{80}{47}=0 \cdot 1652 \ldots=0.165[3 \mathrm{DP}] \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit - Work of merit, for example, correctly substitutes in some value from (ii) to expression/equation in (i) [the one given or the one the candidate produces] - A and B swapped, and one/both substituted into equation / expression from (i) - 2 years $=24$ months High Partial Credit - Fully substituted expression for c with logs/ equation in c with logs - Mixes up A and B, or mishandles years, and finishes correctly

Leaving Certificate 2022

Mathematics

Higher Level

Paper 2

Marking Scheme

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	B	C	D	E
No of categories	3	4	5	6
5-mark scale	$0,2,5$	$0,2,3,5$		
10-mark scale		$0,3,7,10$	$0,3,5,8,10$	
15-mark scale			$0,4,8,12,15$	$0,3,6,9,12,15$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (mid partial credit)
- almost correct response (high partial credit)
- correct response (full credit)
etc.

In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work, or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are denoted with a * and this level of credit is referred to as Full Credit -1. Thus, for example, in Scale 10C, Full Credit -1 of 9 marks may be awarded.

The only marks that may be awarded for a question are those on the scale above, or Full Credit -1.
A rounding penalty is applied only once in each section (a), (b), (c) etc. A penalty for an omitted unit is applied only once in each section (a), (b), (c) etc. There is no penalty for omitted units if the question specifies the unit to be used in the answer.

In general, accept a candidate's work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

Unless otherwise specified, a correct answer without sufficient supporting work is generally awarded the highest level of partial credit (typically Partial Credit or High Partial Credit, as appropriate).

Summary of mark allocations and scales to be applied

Section A (120) Answer any four questions			Section B (100) Answer any two questions		
Question 1 (30)		Question 4 (30)	Question 7 (50)	Question 9 (50)	
(a)(i)	5 C	(a)(i) 10 C	(a) 10C	(a)	10D
(a)(ii)	10D	(a)(ii) 10C	(b) 10D	(b)	10C
(b)	5C	(b) 10C	(c) 10D	(c)(i)	5 C
(c)	10D		(d)(i) 5 B	(c)(ii)	10C
		Question 5 (30)	(d)(ii) 10D	(d)(i)	5B
Question 2 (30)		$\text { (a)(i)(ii) } 10 \mathrm{C}$	(e) 5C	(d)(ii)	10D
(a)	10C	(a)(iii) 5C			
(b)	5C	(b) 15D	Question 8 (50)	Question 10 (50)	
(c)	15D		(a)(i)(ii) 10 C	(a)(i)	10D
		Question 6 (30)	(a)(iii)(iv) 5 C	(a)(ii)	5C
Question 3 (30)		(a) 15 D	(a)(v) (b) 5B	(b)	5 C
(a)	5 C	(b) 10D	(c) 10D	(c)	10D
(b)	10C		$\begin{array}{ll}\text { (d)(i) } & 10 \mathrm{C} \\ \text { (d)(ii) }\end{array}$	(d)	5C
(c)	15D		(d)(ii) 10C	(e)	15E

Palette of annotations available to examiners

Symbol	Name	Meaning in the body of the work	Meaning when used in the right margin
	Tick	Work of relevance	The work presented in the body of the script merits full credit
X	Cross	Incorrect work (distinct from an error)	The work presented in the body of the script merits 0 credit
${ }^{*}$	Star	Rounding / Unit / Arithmetic error / Misreading	
\sim	Horizontal wavy	Error	
M			The work presented in the body of the script merits the relevant level of partial credit (Partial, Low Partial, Mid Partial, and High Partial respectively)
F*	F star		The work presented in the body of the script merits Full Credit -1
[Left Bracket		Another version of this solution is presented elsewhere and it merits equal or higher credit
\}	Vertical wavy	No work on this page / portion of this page	
0	Oversimplify	The candidate has oversimplified the work	
WOM	Work of merit	The candidate has produced work of merit (in line with that defined in the scheme)	
$\underset{N}{S}$	Stops early	The candidate has stopped early in this part	

Note: Where work of substance is presented in the body of the script, the annotation on the right margin should reflect a combination of annotations in the work.

In a C scale that is not marked using steps, where ${ }^{*}$ and \sim and \leadsto appear in the body of the work, then \square should be placed in the right margin.
In the case of a D scale with the same annotations, \square should be placed in the right margin.

Detailed marking notes

Model Solutions \& Marking Notes

Note: The model solutions for each question are not intended to be exhaustive - there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Where steps are listed in the Marking Notes, unless otherwise specified, it is to be taken that they can be independently correct / incorrect - that is, in a candidate's solution, step n can be considered correct even if previous step(s) have not been correctly presented, as long as the work done to arrive at step n from the previous step(s) has not been oversimplified. It is specifically noted where this does not hold. Note also that these steps may not need to be presented in the order specified in the Marking Notes.

Where "finishes correctly" is included in the Marking Notes, this is taken to mean: "finishes using the correct method, and the (incorrect) values the candidate has already found".

	Model Solution - 30 Marks				Marking Notes
		Age (ars)		Scale 5C (0, 2, 3, 5)
		≤ 23	≥ 24		supporting work
	Under.	12785	2922	15707	Low Partial Credit
	Post.	1353	5654	7007	- 1 value correct
	Total	14138	8576	22714	High Partial Credit - 2 values correct

Q1	Model Solution - 30 Marks	Marking Notes
(a) (ii)	Conclusion: They are not independent Justification: Based on independent iff $P(O) . P(U)=P(O \cap U)$: $P(O)=\frac{8576}{22714}$ or $\frac{4288}{11357}$ or 0.377 .. $P(U)=\frac{15707}{22714}=0.6915$.. $P(O) \times P(U)=0.261 \ldots$ $P(O \cap U)=\frac{2922}{22714}=0 \cdot 1286 \neq P(O) \cdot P(U)$ OR Based on independent iff $P(O)=P(O \mid U)$: $P(O)=\frac{8576}{22714}$ or $\frac{4288}{11357}$ or $0 \cdot 377$.. $P(O \mid U)=\frac{2922}{15707}=0 \cdot 186 . .$ OR Based on independent iff $P(U)=P(U \mid O)$: $\begin{aligned} & P(U)=\frac{15707}{22714}=0.691 \\ & P(U \mid O)=\frac{2922}{8576}=0.3407 \end{aligned}$ OR Relatively few of the undergraduates are 24 or older, compared to the university overall. OR Over half the students in the university are undergraduates, but only about one third of students aged 24 or older are undergrads	Scale 10D (0,3,5,8,10) Accept without " $\neq \boldsymbol{P}(\boldsymbol{O}) . \boldsymbol{P}(\boldsymbol{U})$ " or similar, if conclusion is correct Note: calculations that do not involve probabilities are not awarded credit Low Partial Credit - Work of merit, for example, correct conclusion, or makes a relevant statement, or finds a relevant probability Mid Partial Credit - Finds two of $P(O), P(U)$, $P(O) \times P(U)$, or $P(O \cap U)$ - Finds $P(O \mid U)$ or $P(U \mid O)$ High Partial Credit - Enough calculations to support a correct conclusion, but no conclusion - Correct conclusion and finds $P(O) \times P(U)$ - Correct conclusion and finds $P(O), P(U)$, and $P(O \cap U)$ - Correct conclusion and finds $P(O \mid U)$ or $P(U \mid O)$
(b)	$\frac{1}{7} \times \frac{1}{7}$ or $\frac{7}{7} \times \frac{1}{7} \times \frac{1}{7}=\frac{1}{49}$ or $7 \times\left(\frac{1}{7} \times \frac{1}{7} \times \frac{1}{7}\right)=\frac{1}{49}$	Scale 5C (0,2,3,5) Accept correct answer without supporting work Low Partial Credit - Work of merit, for example, one correct probability High Partial Credit - $\frac{1}{7} \times \frac{1}{7} \times \frac{1}{7}$ or $\frac{1}{343}$

Q1	Model Solution - 30 Marks	Marking Notes
(c)	$\begin{aligned} & \frac{g}{b+g}=\frac{3}{5} \Rightarrow 3 b-2 g=0 \text { or } b=\frac{2}{3} g \\ & \frac{g+4}{b+g+8}=\frac{4}{7} \Rightarrow-4 b+3 g=4 \\ & 9 b-6 g=0 \\ & -8 b+6 g=8 \\ & b=8 \\ & 3 b=2 g \Rightarrow 2 g=24 \Rightarrow g=12 \end{aligned}$ OR x students in class : $\frac{g}{x}=\frac{3}{5}$ so $g=\frac{3}{5} x$ $x+8$ in class: $\frac{g+4}{x+8}=\frac{4}{7}$ so $7 g+28=4 x+32$ Sub 1st into 2 nd: $7\left(\frac{3}{5} x\right)+28=4 x+32$ Solve: $x=20$, so $g=12$ and $b=8$ OR Trial and Improvement: 2 boys and 3 girls becomes 6 boys and 7 girls, so $P=\frac{7}{13}$ (not correct) 4,6 becomes 8,10 , so $P=\frac{10}{18}$ (not correct) 8,12 becomes 12,16 , so $P=\frac{16}{28}=\frac{4}{7}$ So $b=8, g=12$	Scale 10D (0,3,5,8,10) 1. Initial equation in b and g 2. Subsequent equation in b and g 3. Finds b 4. Finds g Accept verified correct answer (gives b and g, finds $b+4$ and $g+4$, and verifies that probability is correct) Low Partial Credit - Work of merit, for example, indicates $\frac{2}{5}$, or indicates $b+g$, or some part of fraction involving b and g correct, or indicates use of additional 4 boys or girls or total of 8 in a relevant probability Mid Partial Credit - 1 step correct - 2 or more incorrect possibilities for b and g tested (by adding 4 to each and finding resulting probability) High Partial Credit - 2 steps correct - 2 correct linear equations in 2 unknowns - Correct answer without supporting work or verification Full Credit -1 - Finds one variable (b or g)

Q2	Model Solution - $\mathbf{3 0}$ Marks	Marking Notes
(a)	$\begin{aligned} & C=\left(\frac{1(8)+4(-1)}{4+1}, \frac{1(-4)+4(3)}{4+1}\right) \\ & C=\left(\frac{4}{5}, \frac{8}{5}\right) \end{aligned}$ OR x : 9 steps back [8 to -1] So $x_{C}=8-\frac{4}{5}(9)=\frac{4}{5}$ y: 7 steps up [-4 to 3] So $y_{C}=-4+\frac{4}{5}(7)=\frac{8}{5}$ $C=\left(\frac{4}{5}, \frac{8}{5}\right)$	Scale 10C (0,3,7,10) Low Partial Credit - Correct formula with some substitution - Value from formula explicitly identified $\left(a, b, x_{1}, y_{1}, x_{2}, y_{2}\right)$ - Recognises 9 steps for x or 7 steps for y - Plots both points on a set of axes High Partial Credit - Fully correct substitution into formula - $8+\frac{4}{5}(-1-8)$ and $-4+\frac{4}{5}(3-(-4))$, or equivalent
(b)	From y-intercept to (q, r) : Run $=q$, so rise $=q m$, so y-value $=r-q m$ Answer: $(0, r-q m)$ OR $y=m x+c$ So $r=m q+c$ So $c=r-m q$ Answer: $(0,-m q+r)$ OR $\begin{aligned} & y-y_{1}=m\left(x-x_{1}\right) \\ & y-r=m(x-q) \\ & y-r=m x-m q \\ & y=m x-m q+r \\ & x=0, \text { so } y=-m q+r \end{aligned}$ Answer: $(0,-m q+r)$	Scale 5C (0,2,3,5) Low Partial Credit - Work of merit, for example, equation of line formula (accept m as substitution), or indicates distance q or r correctly on diagram, or indicates $x=0$ High Partial Credit - States $x=0$ and work of merit towards finding y - Correct y-value found Full Credit-1 - Correct values for x and y, but not given as co-ordinates of a point

Q2	Model Solution - 30 Marks	Marking Notes
(c)	$\begin{aligned} & \tan 30^{\circ}=\frac{-2-m_{2}}{1+(-2) m_{2}} \\ & \text { So } \frac{1}{\sqrt{3}}=\frac{-2-m_{2}}{1-2 m_{2}} \\ & 1-2 m_{2}=-2 \sqrt{3}-\sqrt{3} m_{2} \\ & m_{2}=\frac{1+2 \sqrt{3}}{2-\sqrt{3}} \\ & m_{2}=\frac{1+2 \sqrt{3}}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} \\ & m_{2}=8+5 \sqrt{3} \end{aligned}$ OR $\begin{aligned} & \frac{1}{\sqrt{3}}=\frac{-\left(-2-m_{2}\right)}{1+(-2) m_{2}} \\ & 1-2 m_{2}=2 \sqrt{3}+\sqrt{3} m_{2} \\ & m_{2}=\frac{1-2 \sqrt{3}}{2+\sqrt{3}} \\ & m_{2}=\frac{1-2 \sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} \\ & m_{2}=8-5 \sqrt{3} \end{aligned}$	Scale 15D (0,4,8,12,15) 1. Subs in 30 or -2 2. Fully substituted formula (30 and -2) 3. Eliminate fractions and expands 4. Find slope Note: A solution based on $\tan ^{-1}(-2)=116 \cdot 5 \ldots{ }^{\circ}$ is awarded at most Low Partial Credit Low Partial Credit - Work of merit, for example, formula for $\tan \theta$ with substitution for given slope, or $\tan 30^{\circ}$ indicated - Indicates $\tan ^{-1}(-2)$ or $116 \cdot 5 \ldots$.. Mid Partial Credit - 2 steps correct - Sets $30=\frac{-2-m_{2}}{1-2 m_{2}}$ and finishes correctly High Partial Credit - 3 steps correct Full Credit -1 - Correct value for slope, but not in required form

Q3	Model Solution - 30 Marks	Marking Notes
(a)	$\begin{aligned} & \text { Centre }=(1,-4) \\ & \text { Radius }=\sqrt{(-1)^{2}+(4)^{2}-k}=5 \sqrt{3} \\ & 17-k=75 \\ & k=-58 \end{aligned}$ OR $\begin{aligned} & x^{2}-2 x+1+y^{2}+8 y+16+k-17=0 \\ & r^{2}=17-k=(5 \sqrt{3})^{2} \\ & k=17-(5 \sqrt{3})^{2}=-58 \end{aligned}$	Scale 5C (0,2,3,5) Low Partial Credit - Work of merit, for example, some correct substitution into a relevant formula, or centre identified, or completes square for x or y in the equation of the circle High Partial Credit - Finds an equation in k
(b)	$\begin{aligned} & \text { Centre }=(5,-2) \\ & m_{\text {Normal }}=\frac{-4-(-2)}{9-5}=-\frac{1}{2} \\ & m_{\text {Tangent }}=2 \end{aligned}$ OR $\begin{aligned} & (x-5)^{2}+(y+2)^{2}=20 \\ & 2(x-5)+2(y+2) \frac{d y}{d x}=0 \\ & \frac{d y}{d x}=\frac{-x+5}{y+2} \\ & \text { At }(9,-4), \text { slope }=\frac{-9+5}{-4+2}=2 \end{aligned}$	Scale 10C (0,3,7,10) First solution: 1. Identifies centre correctly 2. Finds slope of normal correctly 3. Finds slope of tangent correctly Low Partial Credit - Work of merit, for example, some substitution into slope or line formula, or identifies centre, or some correct differentiation High Partial Credit - 2 steps correct - $\frac{d y}{d x}=\frac{-x+5}{y+2}$ - Finds equation of tangent (without explicitly finding the slope)

Q3	Model Solution - $\mathbf{3 0}$ Marks	Marking Notes
(c)	$\begin{aligned} & \text { Centre }=(r,-r) \\ & (1-r)^{2}+(-8-(-r))^{2}=r^{2} \\ & 1-2 r+r^{2}+64-16 r+r^{2}=r^{2} \\ & r^{2}-18 r+65=0 \\ & (r-13)(r-5)=0 \\ & r=13 \text { or } r=5 \end{aligned}$ Answers: $\begin{aligned} & (x-13)^{2}+(y+13)^{2}=169 \\ & (x-5)^{2}+(y+5)^{2}=25 \end{aligned}$ OR $\begin{aligned} & x^{2}+y^{2}+2 g x+2 f y+c=0 \\ & 1^{2}+(-8)^{2}+2 g(1)+2 f(-8)+c=0 \\ & 2 g-16 f+c=-65 \\ & f=-g \text { and }\|g\|=r=\sqrt{g^{2}+f^{2}-c} \\ & g^{2}=g^{2}+g^{2}-c \Rightarrow g^{2}=c \\ & 2 g-16(-g)+g^{2}=-65 \\ & g^{2}+18 g+65=0 \\ & (g+13)(g+5)=0 \\ & g=-13 \text { or } g=-5 \\ & f=13 \text { or } f=5 \\ & r=13 \text { and } 5 \end{aligned}$ Answers: $\begin{aligned} & x^{2}+y^{2}-26 x+26 y+169=0 \\ & x^{2}+y^{2}-10 x+10 y+25=0 \end{aligned}$	Scale 15D (0,4,8,12,15) Low Partial Credit - Work of merit, for example, indicates centre is $(r,-r)$, or some substitution of $(1,-8)$ into equation of circle, or finds $c=g^{2}$, or $\|g\|=\|f\|$ Mid Partial Credit - Finds correct quadratic in one variable (r, g, f, or c), fully expanded High Partial Credit - Finds both values of r, f, or g - Finds one value of r, f, and g, and the equation of the associated circle

Q4	Model Solution - 30 Marks	Marking Notes
(a) (i)	$\begin{array}{r} \tan (A+(-B))=\frac{\tan A+\tan (-B)}{1-\tan A \tan (-B)} \\ =\frac{\tan A-\tan B}{1+\tan A \tan B} \end{array}$ OR $\begin{aligned} & \frac{\tan A-\tan B}{1+\tan A \tan B}=\frac{\frac{\sin A}{\cos A}-\frac{\sin B}{\cos B}}{1+\frac{\sin A}{\cos A} A} \frac{\sin B}{\cos B} \\ & =\frac{\sin A \cos B-\cos A \sin B}{\cos A \cos B+\sin A \sin B} \\ & \quad=\frac{\sin (A-B)}{\cos (A-B)}=\tan (A-B) \end{aligned}$ OR $\begin{aligned} \tan (A-B) & =\frac{\sin (A-B)}{\cos (A-B)} \\ & =\frac{\sin A \cos B-\cos A \sin B}{\cos A \cos B+\sin A \sin B} \\ & =\frac{\frac{\sin A \cos B}{\cos A \cos B}-\frac{\cos A \sin B}{\cos A \cos B}}{\cos A \cos B}+\frac{\sin A \sin B}{\cos A \cos B} \cos A \cos B \\ & =\frac{\frac{\sin A}{\cos A}-\frac{\sin B}{\cos B}}{\frac{1}{1}+\frac{\sin A \sin B}{\cos A \cos B}} \\ = & \frac{\tan A-\tan B}{1+\tan A \tan B} \end{aligned}$	Scale 10C (0,3,7,10) Low Partial Credit - Work of merit, for example, indicates that $A-B=A+(-B)$, or writes $\tan A=\frac{\sin A}{\cos A}$ High Partial Credit - $\frac{\tan A+\tan (-B)}{1-\tan A \tan (-B)}$ - $\frac{\sin A \cos B-\cos A \sin B}{\cos A \cos B+\sin A \sin B}$

Q4	Model Solution - 30 Marks	Marking Notes
(a) (ii)	$\begin{aligned} \tan 15 & =\tan (60-45) \\ & =\frac{\tan 60-\tan 45}{1+\tan 60 \tan 45} \\ & =\frac{\sqrt{3}-1}{\sqrt{3}+1} \end{aligned}$ OR $\begin{aligned} \tan 15 & =\tan (45-30) \\ & =\frac{\tan 45-\tan 30}{1+\tan 45 \tan 30} \\ & =\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \end{aligned}$ OR $\begin{aligned} & \tan 30=\frac{1}{\sqrt{3}}=\frac{2 \tan 15}{1-\tan ^{2} 15} \\ & 1-\tan ^{2} 15=2 \sqrt{3} \tan 15 \\ & \begin{aligned} \tan ^{2} 15 & +2 \sqrt{3} \tan 15-1=0 \end{aligned} \\ & \begin{aligned} \tan 15 & =\frac{-2 \sqrt{3} \pm \sqrt{(-2 \sqrt{3})^{2}-4 \times 1 \times(-1)}}{2} \\ & =-\sqrt{3}+2 \quad \text { (first quadrant) } \\ & =\frac{\sqrt{3}-1}{\sqrt{3}+1} \end{aligned} \end{aligned}$	Scale 10C (0,3,7,10) Note: accept solution of: $\tan 15^{\circ}=-\sqrt{3}+2=\frac{\sqrt{3}-1}{\sqrt{3}+1}$ Low Partial Credit - Work of merit, for example, $60-45$, or some correct substitution into relevant formula, or top line of relevant formula substituted - $-\sqrt{3}+2$ with no supporting work High Partial Credit - $\frac{\tan 60-\tan 45}{1+\tan 60 \tan 45}$ or equivalent - Makes error(s) in arriving at $\frac{\tan 60-\tan 45}{1+\tan 60 \tan 45}$ (or equivalent) from relevant expression, but finishes correctly - $\frac{\sqrt{3}-1}{\sqrt{3}+1}$ without supporting work - $\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}$ or $-\sqrt{3}+2$, with supporting work (equivalent to that in model solutions)

Q4	Model Solution - 30 Marks	Marking Notes
(b)	Sine Rule: $\begin{aligned} & \frac{180-45}{2}=67 \cdot 5^{\circ} \\ & \frac{x}{\sin 67 \cdot 5}=\frac{10 \sqrt{2-\sqrt{2}}}{\sin 45} \\ & x=\frac{10 \sqrt{2-\sqrt{2}} \sin 67 \cdot 5}{\sin 45}=10 \end{aligned}$ OR Cosine Rule: $\begin{aligned} & (10 \sqrt{2-\sqrt{2}})^{2}=x^{2}+x^{2}-2(x)(x) \cos 45^{\circ} \\ & (2-\sqrt{2}) x^{2}=100(2-\sqrt{2}) \\ & x=10[\operatorname{as} x>0] \end{aligned}$ OR Drop a perpendicular from C : $\begin{aligned} & \cos 67 \cdot 5=\frac{5 \sqrt{2-\sqrt{2}}}{x} \\ & x=\frac{5 \sqrt{2-\sqrt{2}}}{\cos 67 \cdot 5}=10 \end{aligned}$	Scale 10C (0,3,7,10) Low Partial Credit - Work of merit, for example, some correct substitution into a relevant formula, or finds angle at A or B, or draws perpendicular from C (right angle indicated) High Partial Credit - Fully substituted formula (Sine Rule, Cosine Rule, or $\cos 67.5$) Full Credit -1 - Early rounding and finishes correctly

Q5	Model Solution - 30 Marks	Marking Notes
(a) (i) (ii)	(i) $\hat{p}=\frac{135}{400}=0.3375$ $\text { (ii) } \begin{aligned} & 0.3375 \pm \frac{1}{\sqrt{400}} \\ &=0.3375 \pm 0.05 \\ &=[0.2875,0.3875] \end{aligned}$	Scale 10C (0,3,7,10) In (i), accept correct answer without work Accept answers given as percentages, correct to 2 or 4 decimal places Low Partial Credit - Work of merit, for example, indicates $\frac{1}{\sqrt{400}}$ in (ii) High Partial Credit - (i) or (ii) correct
(a) (iii)	$\begin{aligned} \hat{p} & \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\ & =0.3375 \pm 1.96 \sqrt{\frac{0.3375(1-0.3375)}{400}} \\ & =0.3375 \pm 0.04633 \ldots \\ & =[0.2912,0.3838] \quad[4 \mathrm{D.P.}] \end{aligned}$	Scale 5C (0,2,3,5) Low Partial Credit - Some substitution into correct formula, or substantial part thereof - Indicates $1 \cdot 96$, or $1-\hat{p}$ High Partial Credit - Fully substituted correct formula - Finds the maximum or minimum of the confidence interval
(b)	Null Hypothesis: Average [mean] amount has not changed Alternative Hypothesis: Average [mean] amount has changed Conclusion: The average amount has changed Calculations \& Reason: $z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{22 \cdot 16-20 \cdot 79}{\frac{8 \cdot 12}{\sqrt{500}}}=3.7726 \ldots,$ which is greater than 1.96 OR $20 \cdot 79 \pm 1 \cdot 96 \frac{8 \cdot 12}{\sqrt{500}}=[20 \cdot 07 . ., 21 \cdot 50 . .]$ and $22 \cdot 16$ lies outside this OR $22 \cdot 16 \pm 1 \cdot 96 \frac{8 \cdot 12}{\sqrt{500}}=[21 \cdot 44 . ., 22 \cdot 87 \ldots]$ and 20.79 lies outside this	Scale 15D (0,4,8,12,15) 1. Hypotheses 2. Calculations (sufficient to support a conclusion) 3. Conclusion (not considered correct without some relevant calculations) 4. Reason (must match calculations) Low Partial Credit - Work of merit, for example, one hypothesis stated correctly, some relevant calculation indicated, identifies μ or σ, hypotheses swapped Mid Partial Credit - Calculations correct - 2 steps correct High Partial Credit - Calculations correct and one other step

Q6	Model Solution - 30 Marks	Marking Notes
(a)	Circumcentre correctly drawn, with construction lines, and labelled C	Scale 15D (0, 4, 8, 12, 15) Low Partial Credit - Some indication of understanding of perpendicular bisector or midpoint, or some evidence of relevant use of compass - Work towards finding the incentre, orthocentre, or centroid Mid Partial Credit - 1 perpendicular bisector constructed (with construction lines) - 2 non-intersecting perpendicular bisectors drawn, without construction lines High Partial Credit - 2 non-intersecting perpendicular bisectors constructed (with construction lines) - 2 intersecting perpendicular bisectors drawn, without construction lines - Centre correct, no construction lines Full Credit - 1 - 2 intersecting perpendicular bisectors constructed (with construction lines), but circumcentre not labelled

Q6	Model Solution - $\mathbf{3 0}$ Marks	Marking Notes
(b)	$\|\angle A D B\|=90^{\circ} \quad$ [angle in semi-circle] So $\|\angle A B D\|=45^{\circ}$ [isosceles, and angles in a \triangle] So $\|\angle A C D\|=45^{\circ} \quad$ [standing on the same arc] So $\|\angle A D C\|=180-45-40=95^{\circ}$ OR $\|\angle A D B\|=90^{\circ} \quad$ [angle in semi-circle] So $\|\angle A B D\|=45^{\circ}$ [isosceles, and angles in a \triangle] So $\|\angle C D B\|=\|\angle B A C\|=5^{\circ}$ So $\|\angle A D C\|=90+5=95^{\circ}$	Scale 10D (0,3,5,8,10) Low Partial Credit - Work of merit, for example, indicates 90° or right angle or $\|A D\|=\|D B\|$ Mid Partial Credit - Finds 45° angle(s) in triangle ADB - Indicates two equal angles standing on same arc High Partial Credit - Indicates two equal angles standing on same arc, and indicates 90° or uses given isosceles triangle
(c)	Most of proof may be given as construction Join P to O to Q. The angle at the centre $(\|\angle P O Q\|)$ must be twice $\|\angle P R Q\|$, so must be $>180^{\circ}$. So, the point O has to be outside the triangle $P Q R$. OR Assume that O is inside the triangle $P Q R$. Then $\|\angle P O Q\|<180^{\circ}$, where $\angle P O Q$ is the angle in the triangle $P O Q$. But $\|\angle P R Q\|$ is half this angle, so $\|\angle P R Q\|<90^{\circ}$, a contradiction. OR Assume that O is inside the triangle $P Q R$. Join P to O and continue until you hit the circle k, on the minor arc between R and Q. Label this point S. Then $\|\angle P R S\|=90^{\circ}$, as $[P S]$ is a diameter. But $\|P R S\|>\|\angle P R Q\|$, a contradiction. OR The line through R perpendicular to $P R$ intersects k on the arc joining P to Q that doesn't contain R. Label this point T. Join T to P. The centre is the midpoint of [TP], which is outside the triangle $P Q R$.	Scale 5B (0, 2, 5) Note: if proof by contradiction is presented, assume that given first line has been used, even if not stated by candidate. No Credit - Writes down given first line and no other relevant work - Draws / constructs perpendicular bisector of any / all sides Partial Credit - Performs construction / description of construction that would support proof, but proof not given - Relevant statement made, for example, "if R is a right angle, centre is on $P Q$."

Q7	Model Solution - 50 Marks	Marking Notes
(a)	$\begin{aligned} & V=\pi r^{2} h=450 \pi \\ & \left(5^{2}\right) h=450 \\ & h=18 \mathrm{~cm} \end{aligned}$	Scale 10C (0,3,7,10) Low Partial Credit - Work of merit, for example, finds radius, or sets formula for volume equal to 450π High Partial Credit - Fully substituted correct equation - Uses an incorrect volume formula, but finishes correctly - Mishandles diameter / radius, but finishes correctly Full Credit -1 - Correct answer but no or incorrect unit
(b)	$\begin{aligned} & V_{\text {small }}=\frac{1}{3} \pi r^{2} h=12 \pi \text { so } r^{2} h=36 \\ & V_{\text {large }}=\frac{1}{3} \pi(k r)^{2}(2 h)=150 \pi \text { so } k^{2} r^{2} h=225 \end{aligned}$ So $k^{2}(36)=225$ $k=\sqrt{\frac{225}{36}}=\frac{5}{2} \text { or } 2 \cdot 5$	Scale 10D (0,3,5,8,10) 1. Sets up equation based on $V_{\text {small }}$ 2. Sets up equation based on $V_{\text {large }}$ 3. Creates single equation in k^{2} 4. Finds k from equation in k^{2} Low Partial Credit - Work of merit, for example, some correct substitution into volume formula Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct

Q7	Model Solution - 50 Marks	Marking Notes
(c)	Length of arc from B to A : $=\frac{216}{360} \times 2 \pi 8=9 \cdot 6 \pi[\mathrm{~cm}]$ Let radius of cone $=r$: $2 \pi r=9.6 \pi \quad \text { so } \quad r=4.8[\mathrm{~cm}]$	Scale 10D (0,3,5,8,10) Accept length of major or minor arc. However, length of minor arc cannot be used directly to find radius of cone. Low Partial Credit - Work of merit, for example, correct substitution into a relevant formula, or indicates that the arc-length from B to A is the circumference of the cone Mid Partial Credit - Length of arc fully substituted High Partial Credit - Length of arc correct, and work of merit in the other part - Finds radius of cone based on length of minor arc - Finds radius of cone based on curved surface area, without finding length of arc
(d) (i)	$\begin{aligned} V & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(2 \cdot 7)^{3} \\ & =82 \cdot 4479 \ldots=82 \cdot 448 \mathrm{~cm}^{3}[3 \text { D.P. }] \end{aligned}$	Scale 5B ($0,2,5$) Accept correct answer without supporting work Partial Credit - Fully substituted formula

Q7	Model Solution - 50 Marks	Marking Notes
(d) (ii)	Let $r=$ radius of circular base: $\pi r^{2}=5 \cdot 4 \Rightarrow r=1 \cdot 311 \ldots$ Let $x=$ vertical height of centre of sphere above horizontal cut: $\begin{aligned} & x^{2}+(1 \cdot 311 \ldots)^{2}=2 \cdot 7^{2} \\ & x=\sqrt{7 \cdot 29-1 \cdot 718 \ldots}=2 \cdot 36 \ldots \\ & l=2 \cdot 7+2 \cdot 36 \ldots=5 \cdot 06=5 \cdot 1[\mathrm{~cm}][1 \text { D.P. }] \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) 1. Sets up equation involving area of circular base 2. Finds radius of circular base 3. Sets up quadratic equation in x 4. Finds x and hence finds l Low Partial Credit - Work of merit, for example, marking $2 \cdot 7$ correctly, or showing $l>2 \cdot 7$ on diagram Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct Full Credit -1 - Finds x correctly, but fails to find l
(e)	$\begin{aligned} & \|E B\|=15 \\ & \|E C\|=\sqrt{15^{2}+30^{2}}=15 \sqrt{5} \end{aligned}$ $\triangle E O B$ is similar to $\triangle E B C$, so $\frac{\|E O\|}{\|E B\|}=\frac{\|E B\|}{\|E C\|}$ $\|E O\|=\frac{15^{2}}{15 \sqrt{5}}=3 \sqrt{5}[\mathrm{~cm}]$ OR $\|\angle E B O\|=\|\angle B C E\|$ and $\tan B C E=\frac{1}{2}$ $\sin E B O=\frac{\|E O\|}{15}$ and $\sin E B O=\sin B C E=\frac{1}{\sqrt{1^{2}+2^{2}}}=\frac{1}{\sqrt{5}}$ So $\|E O\|=\frac{15}{\sqrt{5}}=3 \sqrt{5} \quad[\mathrm{~cm}]$	Scale 5C (0,2,3,5) Low Partial Credit - Work of merit, for example, indicates two similar triangles, or two equal angles, or a correct trigonometric ratio of a relevant angle, or 15 High Partial Credit - States $\frac{\|E O\|}{\|E B\|}=\frac{\|E B\|}{\|E C\|}$ and has also found $\|E B\|$ and $\|E C\|$ - $\tan B C E=\frac{1}{2}$ and $\sin E B O=\frac{\|E O\|}{15}$, or similar Full Credit - 1 - Correct value found, but not in the correct form - Finds $\|O B\|$ (which is $6 \sqrt{5} \mathrm{~cm}$)

Q8	Model Solution - 50 Marks	Marking Notes
(a) (i) (ii)	(i) \boldsymbol{G} and \mathbf{H} plotted and labelled correctly (ii) Reasonable line of best fit drawn	Scale 10C (0,3,7,10) $\operatorname{In}(\mathbf{i})$, accept $x_{\boldsymbol{H}}$ plotted between 15 and 20 In (ii), accept line of best fit with some values on each side and with reasonable slope Low Partial Credit - Work of merit in plotting G or H, for example, one ordinate correct High Partial Credit - (i) or (ii) correct Full Credit -1 - Points and line correctly plotted, but no or incorrect labels on points
(a) (iii) (iv)	(iii) Answers consistent with candidate's line of best fit (iv) Answer: K Reason: L is well beyond all of the given data points	Scale 5C (0,2,3,5) Low Partial Credit - Work of merit, for example, in (iii): relevant work on the graph, or in (iv): gives K, or reason shows some relevant knowledge High Partial Credit - One part correct - Work of merit in both parts Full Credit-1 - Correct answers and reason, but without supporting work on the graph for (iii)

Q8	Model Solution - 50 Marks	Marking Notes
(a) (v) (b)	(a)(v) $0.9659 \ldots=0.966$ [3 D.P.] (b) Any valid reason, for example: Correlation is related to linear relationships, and this is quadratic The line of best fit is close to horizontal The data is symmetrical: it is decreasing first, and then increasing in a symmetrical way	Scale 5B (0,2,5) In (a)(v), accept correct answer without supporting work Partial Credit - Work of merit, for example, in (a)(v), fully substituted correct formula; or, in (b), draws axis of symmetry or line of best fit Full Credit -1 - (b) correct and 0.965 or 0.96 or 0.97 given in (a)(v)
(c)	$\begin{aligned} & \text { Mean }=\frac{534+S+M}{13}=52 \\ & 534+S+M=676 \\ & S+M=142 \end{aligned}$ Median $=54$, so the least value S could be is 55 Greatest value of $S=142-55=87$	Scale 10D (0,3,5,8,10) Low Partial Credit - Work of merit, for example, finds total of the scores (including or excluding S and/or M), or work towards finding the median (for example, rewriting the values in ascending order) Mid Partial Credit - Correct equation in S and M - Least value $=55$ High Partial Credit - Correct equation in S and M and indicates effort to find values greater than 54 - Finds answers of 54 and 88,56 and 86 , etc. (that is, $S+M=142$ and incorrect values, both ≥ 54, found) - Correct answers (55 and 87) with insufficient supporting work

Q8	Model Solution - 50 Marks	Marking Notes
(d) (i)	Working out: Doesn't replace: $E(X)=0.095(20000)=1900$ Replaces: $E(X)=1450+0 \cdot 005(20000)=1550$ Conclusion: He should replace it now [as expected cost is less if he replaces it]. Note: candidates may find both expected values at once, with a minus in between, to evaluate which is bigger	Scale 10C (0,3,7,10) No Credit - Correct conclusion with no supporting work Low Partial Credit - Work of merit, for example, indicates one relevant operation High Partial Credit - Both expected values found, no or incorrect conclusion - One correct and one incorrect expected value found, with the correct (consistent) conclusion
(d) (ii)	$\begin{aligned} & P(\text { at least } 1)=31-P(\text { none }) \\ & \quad=1-0.905 \times 0.959 \times 0.927 \\ & \quad=1-0.8045 \ldots \\ & \quad=0.19547 \ldots=0.195[3 \text { D.P. }] \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - 1 relevant probability found - 1st line of solution - $0.095 \times 0.041 \times 0.073$ High Partial Credit - $0.905 \times 0.959 \times 0.927$

Q9	Model Solution - 50 Marks	Marking Notes
(a)	Area Field $1=\frac{1}{2}(35)(30) \sin 50$ $=402 \cdot 1 \ldots=402\left[\mathrm{~m}^{2}\right]$ [nearest m^{2}] Area Field $2=\frac{1}{3} \times$ Area Field 1 [since both have common perp. height] $=\frac{402 \cdot 1 \ldots}{3}=134\left[\mathrm{~m}^{2}\right]\left[\text { nearest } \mathrm{m}^{2}\right]$ OR $\text { Total area }=\frac{1}{2}(35)(40) \sin 50=536 \cdot 2 \ldots$ So, area Field $2=536 \cdot 2 \ldots-402 \cdot 1 \ldots$ $\left.=134\left[\mathrm{~m}^{2}\right] \text { [nearest } \mathrm{m}^{2}\right]$	Scale 10D (0,3,5,8,10) Low Partial Credit - Work of merit, for example, some correct substitution into formula for area of a triangle Mid Partial Credit - Finds the area of Field 1 or total area - $\operatorname{Error}(\mathrm{s})$ in finding the area of Field 1, but correctly finds the area of Field 2 from this High Partial Credit - Finds the area of Field 1, and either establishes the ratio relationship in area between both fields or forms the expression for the total area
(b)	$\begin{aligned} & \begin{aligned} \|C B\|^{2} & =35^{2}+30^{2}-2(35)(30) \cos 50 \\ & =775 \cdot 14 \ldots \end{aligned} \\ & \quad\|C B\|=\sqrt{775 \cdot 14 \ldots}=27.8 \ldots=28[\mathrm{~m}][\in \mathbb{N}] \\ & \text { Perimeter }=35+30+28=93[\mathrm{~m}][\in \mathbb{N}] \end{aligned}$	Scale 10C (0,3,7,10) Low Partial Credit - Some correct substitution into Cosine Rule High Partial Credit - Fully substituted Cosine Rule Full Credit - 1 - Finds $\|C B\|$ but fails to find the perimeter

Q9	Model Solution - 50 Marks	Marking Notes
$\begin{aligned} & \text { (c) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} &\left\|P_{1} O\right\|=\sqrt{10^{2}+10^{2}}=14 \cdot 142 \ldots \mathrm{~km} \\ & \approx 14142 \mathrm{~m} \\ & T=\frac{14142}{343}=41 \cdot 2 \ldots \text { secs }=41[\mathrm{secs}][\in \mathbb{N}] \end{aligned}$ OR $\cos 45^{\circ}=\frac{10}{\left\|P_{1} O\right\|}$ So $\left\|P_{1} O\right\|=\frac{10}{\cos 45^{\circ}}=14 \cdot 142 \ldots \mathrm{~km}$, etc.	Scale 5C (0,2,3,5) Low Partial Credit - Work of merit, for example, some correct substitution into a relevant formula, or a correct relevant conversion, or indicates a relevant measurement on the diagram, or 343×41 High Partial Credit - Finds $\left\|P_{1} O\right\|$ in metres - Error in finding $\left\|P_{1} O\right\|$, but continues to find T Full Credit - 1 - Finds T, but doesn't round appropriately or give conclusion - Calculator in incorrect mode, otherwise correct
(c) (ii)	$\left\|P_{1} P_{2}\right\|=41 \times 255=10455 \mathrm{~m}$ So $\tan \theta=\frac{455}{10000}$ $\theta=2 \cdot 60 \ldots=2 \cdot 6\left[^{\circ}\right][1 \text { D.P. }]$	Scale 10C (0,3,7,10) Note: accept use of 41 seconds or more accurate value from (c)(i) Low Partial Credit - Work of merit, for example, some correct substitution into a relevant formula High Partial Credit - Finds $\left\|P_{1} P_{2}\right\|$ - Error in finding $\left\|P_{1} P_{2}\right\|$, but finishes correctly
(d) (i)	For example: The time taken for the sound to go from P_{3} to \mathbf{O} [LHS] is the same as the time taken for the plane to go from P_{3} to $P_{4}[R H S]$	Scale 5B(0,2,5) Partial Credit - Work of merit, for example, implies LHS and / or RHS bears a relationship with time, or makes a relevant connection to distance or speed

Q9	Model Solution - 50 Marks	Marking Notes
(d) (ii)	$\begin{aligned} & \frac{\sqrt{100+d^{2}}}{0.343}=\frac{2 d}{0.255} \\ & \frac{2 \times 0.343 \times d}{0.255}=\sqrt{100+d^{2}} \\ & \frac{686}{255} d=\sqrt{100+d^{2}} \\ & (7 \cdot 23 \ldots) d^{2}=100+d^{2} \\ & (6 \cdot 23 \ldots) d^{2}=100 \\ & d^{2}=\frac{100}{6 \cdot 23 \ldots}=16 \cdot 03 \ldots \\ & d=\sqrt{16 \cdot 03 \ldots}=4 \cdot 00 \ldots=4 \text { [1 D.P.] } \end{aligned}$	Scale 10D (0,3,5,8,10) 1. Squares both sides and expands 2. Writes $a \times d^{2}=b$, for $a, b \in \mathbb{R}$ 3. Find d Low Partial Credit - Work of merit, for example, some correct rearrangement, or indicates squaring Mid Partial Credit - 1 step correct High Partial Credit - 2 steps correct

Q10	Model Solution - 50 Marks	Marking Notes
$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & z=\frac{240-225}{12}=\frac{15}{12}=1.25 \\ & P(x>240)=P(z>1.25) \\ & \quad=1-P(z<1.25) \\ & \quad=1-0.8944 \\ & \quad=0.1056 \end{aligned}$ Answer: 10.56\%	Scale 10D (0,3,5,8,10) 1. Find z-score 2. Find 0.8944 3. Find solution Low Partial Credit - Work of merit, for example, some correct substitution into relevant formula, relevant diagram drawn, indicates μ or σ Mid Partial Credit - Finds z-score $\left(\frac{240-225}{12}\right)$ High Partial Credit - Finds z-score and further work, for example, finds $0 \cdot 8944$, or indicates $1-P(x<240)$ or similar
(a) (ii)	Look up $P=0 \cdot 8: z=0.84$ or 0.85 Time $=\frac{225-x}{12}=0 \cdot 84$ So Time $=225-0.84(12)=214.92$ Or Time $=225-0.85(12)=214.8$ Accept time $=214$ [secs] or 215 [secs]	Scale 5C ($0,2,3,5$) Low Partial Credit - Work of merit, for example, some correct substitution into relevant formula, relevant diagram drawn, indicates μ or σ High Partial Credit - Finds z-score and further work, for example, some correct substitution into relevant formula, or relevant diagram drawn
(b)	$\begin{aligned} & 1-0.05=0.95 \\ & P=0.95 \times 0.95 \times 0.95 \times 0.05 \\ & \quad=0.04286 \ldots=0.0429 \text { [4 D.P.] } \end{aligned}$	Scale 5C (0,2,3,5) Low Partial Credit - Work of merit, for example, 1 $0 \cdot 05$, or some correct substitution into a relevant formula, or lists NNNY or similar High Partial Credit - Fully substituted correct formula - One probability missing or extra, and evaluates - Swaps $0 \cdot 05$ and $0 \cdot 95$, otherwise correct

Q10	Model Solution - $\mathbf{5 0}$ Marks	Marking Notes
(c)	$\begin{aligned} & P(\text { at most } 2)=P(0 \text { or } 1 \text { or } 2) \\ & =P(0)+P(1)+P(2) \\ & =0 \cdot 9^{20}+\binom{20}{1} 0 \cdot 1^{1} 0 \cdot 9^{19}+\binom{20}{2} 0 \cdot 1^{2} 0 \cdot 9^{18} \\ & =0 \cdot 12157 \ldots+0 \cdot 27017 \ldots+0 \cdot 28517 \ldots \\ & =0.67692 \ldots=0.6769 \text { [4 D.P.] } \end{aligned}$	Scale 10D (0,3,5,8,10) Low Partial Credit - 1st line of solution - Finds $0 \cdot 9$ Mid Partial Credit - Fully substituted formulae for two of $P(0), P(1)$, and $P(2)$ High Partial Credit - Fully substituted formulae for $P(0)$, $P(1)$, and $P(2)$
(d)	50 possible pairs of numbers add to 101: $1+100, \quad 2+99, \ldots, \quad 50+51$ $300 C 2=44850$ pairs in total. So $P=\frac{50}{44850}=\frac{1}{897}$ OR 100 different 1 st numbers could be picked; for each, only one $2 n d$ number will give 101: $P=\frac{100}{300} \times \frac{1}{299}=\frac{1}{897}$	Scale 5C (0,2,3,5) Low Partial Credit - Work of merit, for example, indicates at least two possible pairs adding to 101 , or $300 C 2$ High Partial Credit - Finds 50 and puts over a relevant number - Finds 50 and C_{2}^{300} - $\frac{100}{300} \times \frac{1}{299}$

Q10	Model Solution - 50 Marks	Marking Notes
(e)	Windy: $\begin{aligned} & \frac{5265}{6000}=0 \cdot 8775 \\ & \text { So } z=1 \cdot 16 \text { or } 1 \cdot 17 \\ & \text { So Time }=254+1 \cdot 16(38)=298 \cdot 08 \\ & \text { Or Time }=254+1 \cdot 17(38)=298 \cdot 46 \end{aligned}$ Sunny: $z=\frac{298 \cdot 08-247}{29}=1 \cdot 76137 \ldots$ Or $z=\frac{298 \cdot 46-247}{29}=1.77448 \ldots$ Taking $z=1.76$, there are 0.9608 of runners are faster than Sorcha, so position $=0.9608 \times 2000=1921.6$, i.e. 1921th or 1922th Taking $z=1.77$, position $=0.9616 \times 2000=1923 \cdot 2$, i.e. 1923th or 1924th Taking $z=1.78$, position $=0.9625 \times 2000=1925$ th	Scale 15E (0, 3, 6, 9, 12, 15) 1. Finds $\frac{5265}{6000}$ 2. Finds the z-score for the Windy marathon 3. Finds the time for the marathons 4. Finds the z-score for the Sunny marathon 5. Finds the finishing position Low Partial Credit - Work of merit, for example, draws a relevant diagram, indicates μ or σ Low Mid Partial Credit - 2 steps correct High Mid Partial Credit - 3 steps correct High Partial Credit - 4 steps correct

